Categories

Tag: Radiology

Infection Control for COVID-19 Imaging

By STEPHEN BORSTELMANN, MD

Occasionally, you get handed a question you know little about, but it’s clear you need to know more.  Like most of us these days, I was chatting with my colleagues about the novel coronavirus. It goes by several names: SARS-CoV-2, 2019-nCoV or COVID-19 but I’ll just call it COVID.  Declared a pandemic on March 12, 2020 by the World Health Organization (WHO), COVID is diagnosed by laboratory test – PCR.  The early PCR test used in Wuhan was apparently low sensitivity (30-60%), lengthy to run (days), and in short supply.  As CT scanning was relatively available, it became an important diagnostic tool for suspected COVID cases in Wuhan.

The prospect of scanning thousands of contagious patients was daunting, with many radiologists arguing back and forth about its appropriateness.  As the pandemic has evolved, we now have better and faster PCR tests and most radiologists do not believe that CT scanning has a role for diagnosis of COVID, but rather should be reserved for its complications. Part of the reason is the concern of transmission of COVID to other patients or healthcare workers via the radiology department.

But then someone asked: “After you have scanned a patient for COVID, how long will the room be down?” And nobody really could answer – I certainly couldn’t.  A recent white paper put forth by radiology leaders suggested anywhere from 30 minutes to three hours. A general review of infection control information for the radiologist and radiologic technologist can be found in Radiographics.

So, let’s go down the rabbit hole of infection control in the radiology department. While I’m a radiologist, and will speak about radiology-specific concerns, the fundamental rationale behind it is applicable to other ancillary treatment rooms in the hospital or outpatient arena, provided the appropriate specifics about THAT environment is obtained from references held by the CDC.

Continue reading…

CT scanning is just awful for diagnosing Covid-19

By LUKE OAKDEN-RAYNER, MBBS

I got asked the other day to comment for Wired on the role of AI in Covid-19 detection, in particular for use with CT scanning. Since I didn’t know exactly what resources they had on the ground in China, I could only make some generic vaguely negative statements. I thought it would be worthwhile to expand on those ideas here, so I am writing two blog posts on the topic, on CT scanning for Covid-19, and on using AI on those CT scans.

As background, the pro-AI argument goes like this:

  1. CT screening detects 97% of Covid-19, viral PCR only detects 70%!
  2. A radiologist takes 5-10 minutes to read a CT chest scan. AI can do it in a second or two.
  3. If you use CT for screening, there will be so many studies that radiologists will be overwhelmed.

In this first post, I will explain why CT, with or without AI, is not worthwhile for Covid-19 screening and diagnosis, and why that 97% sensitivity report is unfounded and unbelievable.

Next post, I will address the use of AI for this task specifically.

Continue reading…

Can AI diagnose COVID-19 on CT scans? Can humans?

Vidur Mahajan
Vasanth Venugopal

By VASANTH VENUGOPAL MD and VIDUR MAHAJAN MBBS, MBA

What can Artificial Intelligence (AI) do?

AI can, simply put, do two things – one, it can do what humans can do. These are tasks like looking at CCTV cameras, detecting faces of people, or in this case, read CT scans and identify ‘findings’ of pneumonia that radiologists can otherwise also find – just that this happens automatically and fast. Two, AI can do things that humans can’t do – like telling you the exact time it would take you to go from point A to point B (i.e. Google maps), or like in this case, diagnose COVID-19 pneumonia on a CT scan.

Pneumonia on CT scans?

Pneumonia, an infection of the lungs, is a killer disease. According to WHO statistics from 2015, Community Acquired Pneumonia (CAP) is the deadliest communicable disease and third leading cause of mortality worldwide leading to 3.2 million deaths every year.

Pneumonias can be classified in many ways, including the type of infectious agent (etiology), source of infection and pattern of lung involvement. From an etiological classification perspective, the most common causative agents of pneumonia are bacteria (typical like Pneumococcus, H.Influenza and atypical like Legionella, Mycoplasma), viral (Influenza, Respiratory Syncytial Virus, Parainfluenza, and adenoviruses) and fungi (Histoplasma & Pneumocystis Carinii).

Continue reading…

Radiology Gets an “App Store” for its AI Tools | Ben Panter, Blackford Analysis

AI in radiology is not new. In fact, the field is swarming with various apps and tools seeking to find a place in the radiologist’s toolkit to get more value out of medical imaging and improve patient care. So, how does a radiology team pick which tools to invest in? Enter Blackford Analysis, a health tech startup that has, simply put, designed an “app store” for radiology departments that liberates access to life-saving tech for radiologists. CEO Ben Panter explains how the platform not only gives radiologists access to a curated group of best-in-class AI radiology tools, but does so en-mass to circumvent the need for one-off approvals from hospital administrators and procurement teams.

Filmed at Bayer G4A Signing Day in Berlin, Germany, October 2019.

Continue reading…

Explain yourself, machine. Producing simple text descriptions for AI interpretability

By LUKE OAKDEN-RAYNER, MD

One big theme in AI research has been the idea of interpretability. How should AI systems explain their decisions to engender trust in their human users? Can we trust a decision if we don’t understand the factors that informed it?

I’ll have a lot more to say on the latter question some other time, which is philosophical rather than technical in nature, but today I wanted to share some of our research into the first question. Can our models explain their decisions in a way that can convince humans to trust them?


Decisions, decisions

I am a radiologist, which makes me something of an expert in the field of human image analysis. We are often asked to explain our assessment of an image, to our colleagues or other doctors or patients. In general, there are two things we express.

  1. What part of the image we are looking at.
  2. What specific features we are seeing in the image.

This is partially what a radiology report is. We describe a feature, give a location, and then synthesise a conclusion. For example:

There is an irregular mass with microcalcification in the upper outer quadrant of the breast. Findings are consistent with malignancy.

You don’t need to understand the words I used here, but the point is that the features (irregular mass, microcalcification) are consistent with the diagnosis (breast cancer, malignancy). A doctor reading this report already sees internal consistency, and that reassures them that the report isn’t wrong. An common example of a wrong report could be:

Continue reading…

RSNA 2019 AI Round-Up

Shah Islam
Hugh Harvey

By HUGH HARVEY, MBBS and SHAH ISLAM, MBBS

AI in medical imaging entered the consciousness of radiologists just a few years ago, notably peaking in 2016 when Geoffrey Hinton declared radiologists’ time was up, swiftly followed by the first AI startups booking exhibiting booths at RSNA. Three years on, the sheer number and scale of AI-focussed offerings has gathered significant pace, so much so that this year a decision was made by the RSNA organising committee to move the ever-growing AI showcase to a new space located in the lower level of the North Hall. In some ways it made sense to offer a larger, dedicated show hall to this expanding field, and in others, not so much. With so many startups, wiggle room for booths was always going to be an issue, however integration of AI into the workflow was supposed to be a key theme this year, made distinctly futile by this purposeful and needless segregation.

By moving the location, the show hall for AI startups was made more difficult to find, with many vendors verbalising how their natural booth footfall was not as substantial as last year when AI was upstairs next to the big-boy OEM players. One witty critic quipped that the only way to find it was to ‘follow the smell of burning VC money, down to the basement’. Indeed, at a conference where the average step count for the week can easily hit 30 miles or over, adding in an extra few minutes walk may well have put some of the less fleet-of-foot off. Several startup CEOs told us that the clientele arriving at their booths were the dedicated few, firming up existing deals, rather than new potential customers seeking a glimpse of a utopian future. At a time when startups are desperate for traction, this could have a disastrous knock-on effect on this as-yet nascent industry.

It wasn’t just the added distance that caused concern, however. By placing the entire startup ecosystem in an underground bunker there was an overwhelming feeling that the RSNA conference had somehow buried the AI startups alive in an open grave. There were certainly a couple of tombstones on the show floor — wide open gaps where larger booths should have been, scaled back by companies double-checking their diminishing VC-funded runway. Zombie copycat booths from South Korea and China had also appeared, and to top it off, the very first booth you came across was none other than Deep Radiology, a company so ineptly marketed and indescribably mysterious, that entering the show hall felt like you’d entered some sort of twilight zone for AI, rather than the sparky, buzzing and upbeat showcase it was last year. It should now be clear to everyone who attended that Gartner’s hype curve has well and truly been swung, and we are swiftly heading into deep disillusionment.

Continue reading…

The FDA has approved AI-based PET/MRI “denoising”. How safe is this technology?

By LUKE OAKDEN-RAYNER, MD

Super-resolution* promises to be one of the most impactful medical imaging AI technologies, but only if it is safe.

Last week we saw the FDA approve the first MRI super-resolution product, from the same company that received approval for a similar PET product last year. This news seems as good a reason as any to talk about the safety concerns myself and many other people have with these systems.

Disclaimer: the majority of this piece is about medical super-resolution in general, and not about the SubtleMR system itself. That specific system is addressed directly near the end.

Zoom, enhance

Super-resolution is, quite literally, the “zoom and enhance” CSI meme in the gif at the top of this piece. You give the computer a low quality image and it turns it into a high resolution one. Pretty cool stuff, especially because it actually kind of works.

In medical imaging though, it’s better than cool. You ever wonder why an MRI costs so much and can have long wait times? Well, it is because you can only do one scan every 20-30 minutes (with some scans taking an hour or more). The capital and running costs are only spread across one to two dozen patients per day.

So what if you could get an MRI of the same quality in 5 minutes? Maybe two to five times more scans (the “getting patient ready for the scan” time becomes the bottleneck), meaning less cost and more throughput.

This is the dream of medical super-resolution.

Continue reading…

Are Radiologists Prepared for The Future?

By ALEX LOGSDON, MD

Leave your bias aside and take a look into the healthcare future with me. No, artificial intelligence, augmented intelligence and machine learning will not replace the radiologist. It will allow clinicians to.

The year is 2035 (plus or minus 5 years), the world is waking up after a few years of economic hardship and maybe even some dreaded stagflation. This is an important accelerant to where we are going, economic hardship, because it will destroy most radiology AI startups that have thrived on quantitative easing polices and excessive liquidity of the last decade creating a bubble in this space. When the bubble pops, few small to midsize AI companies will survive but the ones who remain will consolidate and reap the rewards. This will almost certainly be big tech who can purchase assets/algorithms across a wide breadth of radiology and integrate/standardize them better than anyone. When the burst happens some of the best algorithms for pulmonary embolism, stroke, knee MRI, intracranial hemorrhage etc. etc. will become available to consolidate, on the “cheap”.

Hospitals can now purchase AI equipment that is highly effective both in cost and function, and its only getting better for them. It doesn’t make sense to do so now but soon it will. Consolidation in healthcare has led to greater purchasing power from groups and hospitals. The “roads and bridges” that would be needed to connect such systems are being built and deals will soon be struck with GE, Google, IBM etc., powerhouse hundred-billion-dollar companies, that will provide AI cloud-based services. RadPartners is already starting to provide natural language processing and imaging data to partners; that’s right, you speak into the Dictaphone and it is recorded, synced with the image you dictated, processed with everyone else to find all the commonalities in descriptors to eventually replace you. It is like the transcriptionists ghost of the past has come back to haunt us and no one cried for them. Prices will be competitive, and adoption will be fast, much faster than most believe.

Now we have some patients who arrive for imaging, as outpatients, ER visits, inpatients; it does not matter the premise is the same. Ms. Jones has chest pain, elevated d-dimer, history of Lupus anti-coagulant and left femoral DVT. Likely her chart has already been analyzed by a cloud-based AI (merlonintelligence.com/intelligent-screening/) and the probability of her having a PE is high, this is relayed to the clinician (PA, NP, MD, DO) and the study is ordered. She’s sent for a CT angiogram PE protocol imaging study. This is important to understand because there will be no role for the radiologist at this level. The recommendation for imaging will be a machine learning algorithm based off more data and papers than any one radiologist could ever read; and it will be instantaneous and fluid. Correct studies will be recommended and “incorrectly” ordered studies will need justifications without radiologist validation.

Continue reading…

The rAIdiologist will see you now

By RIZWAN MALIK, MBBS

The year is 2019 and Imaging By Machines have fulfilled their prophesy and control all Radiology Departments, making their organic predecessors obsolete.

One such lost soul tries to decide how he might reprovision the diagnostic equipment he has set up on his narrow boat on the Manchester Ship Canal, musing at the extent of the digital take over during his supper (cod of course).

What I seek to do in this short paper is not to revisit the well-trodden road of what Artificial Intelligence, deep learning, machine learning or natural language processing might be, the data-science that underpins them nor limit myself to what specific products or algorithms are currently available or pending. Instead I look to share my views on what and where in the patient journey I perceive there may be uses for “AI” in the pathway.

Continue reading…

The best medical AI research (that you probably haven’t heard of)

By LUKE OAKDEN-RAYNER

I’ve been talking in recent posts about how our typical methods of testing AI systems are inadequate and potentially unsafe. In particular, I’ve complainedthat all of the headline-grabbing papers so far only do controlled experiments, so we don’t how the AI systems will perform on real patients.

Today I am going to highlight a piece of work that has not received much attention, but actually went “all the way” and tested an AI system in clinical practice, assessing clinical outcomes. They did an actual clinical trial!

Big news … so why haven’t you heard about it?


The Great Wall of the West

Tragically, this paper has been mostly ignored. 89 tweets*, which when you compare it to many other papers with hundreds or thousands of tweets and news articles is pretty sad. There is an obvious reason why though; the article I will be talking about today comes from China (there are a few US co-authors too, not sure what the relative contributions were, but the study was performed in China).

China is interesting. They appear to be rapidly becoming the world leader in applied AI, including in medicine, but we rarely hear anything about what is happening there in the media. When I go to conferences and talk to people working in China, they always tell me about numerous companies applying mature AI products to patients, but in the media we mostly see headline grabbing news stories about Western research projects that are still years away from clinical practice.

This shouldn’t be unexpected. Western journalists have very little access to China**, and Chinese medical AI companies have no need to solicit Western media coverage. They already have access to a large market, expertise, data, funding, and strong support both from medical governance and from the government more broadly. They don’t need us. But for us in the West, this means that our view of medical AI is narrow, like a frog looking at the sky from the bottom of a well^.

Continue reading…

Registration

Forgotten Password?