Categories

Tag: Ovaure

Hyping Cancer Genotyping

Screen Shot 2014-07-28 at 7.53.06 PM

It was 1970. I was in my laboratory at the NIH sequencing a murine myeloma protein in order to define the structure of its antibody combining region. Studies of protein conformation were at the cutting edge of science then; enthusiasm abounded. But it was clear to me that this work, in all its scientific elegance, had little to do with treating myeloma or anything else in mice or man. The reason for all the painstaking effort was the joy of pushing back the frontier of ignorance, even if only a bit. No one could foresee clinical utility then, nor would any become apparent for decades. Today such monoclonal antibodies are widely used to treat many diseases, sometimes with efficacy that justifies the costliness.

Genomics is in a bigger hurry.

Thanks to 40 years of breakthroughs, many earning Nobel Prizes, the chromosome carrying the defective gene underlying a genetic disease, Huntington’s disease, was identified in 1983 and the gene sequenced a decade later. In short order, defective genes underlying a number of single-gene diseases were defined: cystic fibrosis, hemophilia, and others. We all wait with baited breath for these elegant insights to transform into primary treatments for single allele genetic diseases. Attempts to transfect patients with normal genes are encouraging but barely so; it has proved difficult to get the right gene to stay in the right cells. Likewise, directly modifying the abnormal genetic apparatus is still largely just promising. The fallback remains working downstream from the genetic apparatus, replacing or modifying the defective products of many of these pathogenetic genes.  Nonetheless, optimism regarding modifying the genetic apparatus itself is rational as is ever more boldness on the part of molecular biologists.

Continue reading…