I’m keynoting this year’s Intersystems Global Conference on the topic of “Freeing the Data” from the transactional systems we use today such as Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), Electronic Health Records (EHR), etc. As I’ve prepared my speech, I’ve given a lot of thought to the evolving data needs we have in our enterprises.
In healthcare and in many other industries, it’s increasingly common for users to ask IT for tools and resources to look beyond the data we enter during the course of our daily work. For one patient, I know the diagnosis, but what treatments were given to the last 1000 similar patients. I know the sales today, but how do they vary over the week, the month, and the year? Can I predict future resource needs before they happen?
In the past, such analysis typically relied on structured data, exported from transactional systems into data marts using Extract/Transform/Load (ETL) utilities, followed by analysis with Online Analytical Processing (OLAP) or Business Intelligence (BI) tools.
In a world filled with highly scalable web search engines, increasingly capable natural language processing technologies, and practical examples of artificial intelligence/pattern recognition (think of IBM’s Jeopardy-savvy Watson as a sophisticated data mining tool), there are novel approaches to freeing the data that go beyond a single database with pre-defined hypercube rollups. Here are my top 10 trends to watch as we increasingly free data from transactional systems.Continue reading…