
By KIM BELLARD
As a DNA-based creature myself, I’m always fascinated by DNA’s remarkable capabilities. Not just all the ways that life has found to use it, but our ability to find new ways to take advantage of them. I’ve written about DNA as a storage medium, as a neural network, as a computer, in a robot, even mirror DNA. So when I read about the Synthetic Human Genome (SynHG) project, last month, I was thrilled.
The project was announced, and is being funded, by the Wellcome Trust, to the tune of £10 million pounds over five years. Its goal is “to develop the foundational tools, technology and methods to enable researchers to one day synthesise genomes.”
The project’s website elaborates:
Through programmable synthesis of genetic material we will unlock a deeper understanding of life, leading to profound impacts on biotechnology, potentially accelerating the development of safe, targeted, cell-based therapies, and opening entire new fields of research in human health. Achieving reliable genome design and synthesis – i.e. engineering cells to have specific functions – will be a major milestone in modern biology.
The goal of the current project isn’t to build a full synthetic genome, which they believe may take decades, but “to provide proof of concept for large genome synthesis by creating a fully synthetic human chromosome.”
That’s a bigger deal than you might realize.
“Our DNA determines who we are and how our bodies work,” says Michael Dunn, Director of Discovery Research at Wellcome. “With recent technological advances, the SynHG project is at the forefront of one of the most exciting areas of scientific research.”
The project is led by Professor Jason Chin from the Generative Biology Institute at Ellison Institute of Technology and the University of Oxford, who says: “The ability to synthesize large genomes, including genomes for human cells, may transform our understanding of genome biology and profoundly alter the horizons of biotechnology and medicine.”
He further told The Guardian: “The information gained from synthesising human genomes may be directly useful in generating treatments for almost any disease.”
Professor Patrick Yizhi Cai, Chair of Synthetic Genomics at the University of Manchester boasted: “We are leveraging cutting-edge generative AI and advanced robotic assembly technologies to revolutionize synthetic mammalian chromosome engineering. Our innovative approach aims to develop transformative solutions for the pressing societal challenges of our time, creating a more sustainable and healthier future for all.”
Project member Dr Julian Sale, of the MRC Laboratory of Molecular Biology in Cambridge, told BBC News the research was the next giant leap in biology: “The sky is the limit. We are looking at therapies that will improve people’s lives as they age, that will lead to healthier aging with less disease as they get older. We are looking to use this approach to generate disease-resistant cells we can use to repopulate damaged organs, for example in the liver and the heart, even the immune system.”
Consider me impressed.
Continue reading…