Categories

Tag: CAR-T Therapy

I’m Sensing Some Future

By KIM BELLARD

One of my frequent laments is that here we are, a quarter of the way into the 21st century, yet too much of our health care system still looks like the 20th century, and not enough like the 22nd century. It’s too slow, too reactive, too imprecise, and uses too much brute force. I want a health care system that seems more futuristic, that does things more elegantly.

So here are three examples of the kinds of things that give me hope, in rough order of when they might be ready for prime time:

Floss sensor: You know you’re supposed to floss every day, right? And you know that your oral health is connected to your overall health, in a number of ways, right? So some smart people at Tufts University thought, hmm, perhaps we can help connect those dots.

 “It started in a collaboration with several departments across Tufts, examining how stress and other cognitive states affect problem solving and learning,” said Sameer Sonkusale, professor of electrical and computer engineering. “We didn’t want measurement to create an additional source of stress, so we thought, can we make a sensing device that becomes part of your day-to-day routine? Cortisol is a stress marker found in saliva, so flossing seemed like a natural fit to take a daily sample.”

The result: “a saliva-sensing dental floss looks just like a common floss pick, with the string stretched across two prongs extending from a flat plastic handle, all about the size of your index finger.”

It uses a technology called electropolymerized molecularly imprinted polymers (eMIPs) to detect the cortisol. “The eMIP approach is a game changer,” said Professor Sonkusale. “Biosensors have typically been developed using antibodies or other receptors that pick up the molecule of interest. Once a marker is found, a lot of work has to go into bioengineering the receiving molecule attached to the sensor. eMIP does not rely on a lot of investment in making antibodies or receptors. If you discover a new marker for stress or any other disease or condition, you can just create a polymer cast in a very short period of time.”

The sensor is designed to track rather to diagnose, but the scientists are optimistic that the approach can be used to track other conditions, such as oestrogen for fertility tracking, glucose for diabetes monitoring, or markers for cancer. They also hope to have a sensor that can track multiple conditions, “for more accurate monitoring of stress, cardiovascular disease, cancer, and other conditions.” 

They believe that their sensor has comparable accuracy to the best performing sensors currently available, and are working on a start-up to commercialize their approach.

Nano-scale biosensor: Flossing is all well and good, but many of us are not as diligent about it as we should be, so, hey, what about sensors inside us that do the tracking without us having to do anything? That’s what a team at Stanford are suggesting in A biochemical sensor with continuous extended stability in vivo, published in Nature.

The researchers say:

The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo.

“We needed a material system that could sense the target while protecting the molecular switches, and that’s when I thought, wait, how does biology solve this problem?” said Yihang Chen, the first author of the paper. Their modular biosensor, called the Stable Electrochemical Nanostructured Sensor for Blood In situ Tracking (SENSBIT) system, can survive more than a week in live rats and a month in human serum.

Continue reading…

Moving the bar(rier) forward: the benefits of de-risking cytokine release syndrome

By SAMANTHA McCLENAHAN

Every breakthrough in cancer treatment brings hope, but it also comes with a staggering price, raising a critical question: how do we balance groundbreaking advances with the financial reality that could limit access for many patients? 

Developing new cancer medications involves extensive research, clinical trials, and regulatory approvals; a lengthy process that requires substantial financial investment. Within clinical trials, this includes maintaining stringent safety protocols and managing a variety of adverse events, from mild reactions requiring little to no care to extremely severe events with hefty hospital stays and life-saving medical intervention. Take Cytokine Release Syndrome (CRS), for example. CRS is a common adverse event associated with chimeric antigen receptor (CAR) T cell therapy and other immunotherapies that presents across this spectrum with flu-like symptoms in mild cases of CRS to organ damage, and even death, in severe cases. The median cost of treating CRS following cancer-target immunotherapy is over half a million dollars in the United States. Tackling that large price tag – in addition to another $500,000 for CAR-T cell therapies – and reducing associated risks are necessary to break down barriers to care for many patients – especially those who are uninsured or with limited resources hindering the ability to travel, miss work, or secure a caregiver.

Unlocking Cost Efficiency in Clinical Trials with Digital Health Technologies

Integration of digital health technologies (DHTs) including telehealth, wearables such as smart watches, remote patient monitoring, and mobile applications in oncology care and clinical trials has shown immense value in improving patient outcomes, despite the slow uptake within the field. General benefits during clinical trials are captured through: 

  1. Reducing clinical visits and shortening trial length – Remote patient monitoring and virtual consultations minimize the need for physical visits, accelerating trial timelines. 
  2. Enhancing recruitment, diversity, and participant completion – Targeted outreach supported by big data analytics and machine learning algorithms helps to effectively identify and engage with eligible candidates, leading to faster recruitment and lower dropout rates. Digital technologies also overcome traditional barriers to participation, such as location, transportation, language barriers, and information access.  for a broader representation of patient demographics and more generalized findings and improved healthcare equity. 
  3. Increasing availability of evidentiary and safety requirements – Continuous data collection and monitoring in the setting most comfortable to patients – extending beyond clinical walls. This provides a pool of data to support clinical endpoints and enhances patient safety by enabling early detection of adverse events. 

While the exact cost of these digital interventions varies by study, there is significant evidence that cost-saving measures are emerging.

Continue reading…